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Abstract. Scalability is an important property of every large-scale rec-
ommender system. In order to ensure smooth user experience, recom-
mendation algorithms should be optimized to work with large amounts
of user data. This paper presents the optimization approach used in the
development of the E-learning activities recommender system (ELARS).
The recommendations for students and groups in ELARS include four
different types of items: Web 2.0 tools, collaborators (colleague students),
optional e-learning activities, and advice. Since implemented recommen-
dation algorithms depend on prediction of students’ preferences, algo-
rithm that computes predictions was offloaded to graphics processing
unit using NVIDIA CUDA heterogeneous parallel programming plat-
form. This offload increases performance significantly, especially with
large number of students using the system.

Keywords: e-learning, recommender system, ELARS, algorithm opti-
mization, heterogeneous paralell programming, NVIDIA CUDA

1 Introduction

Recommender systems support users in identifying services in information-rich
environments. These systems can provide a solution for the information overload
problem by recommending items that are potentially useful for the target user
or that are within the scope of his/her interests [1]. In addition, recommender
systems ensure personalization since recommendations are generated according
to user’s characteristics. Therefore, recommender systems are often used across
different domains like entertainment industry, e-commerce and e-learning [4].

The usefulness of items (utility) that can be recommended is expressed as
a numerical value (rating). This value is determined by the user or it can be
predicted. Accordingly, the recommendation problem comes down to the predic-
tion of the unknown utility values in order to recommend item or items with the
highest utility to the target user. Prediction algorithms are usually based on two
commonly used methods: collaborative filtering and content-based recommenda-
tions [1,4]. Performance of the recommender system depends on the accuracy or



precision of the prediction algorithm. Therefore, appropriate algorithm should
be chosen based on experiment in which a few algorithms are compared using
some evaluation metric. Another important property of the recommender system
that may affect user experience is scalability. The system should be able to scale
well, ideally both horizontally and vertically, to keep up with increasing number
of users navigating through ever-enlarging collections of items [18], producing
large amount of data to be analyzed. ELARS, described below, is an example of
such a system, and our research described in this paper is on scaling ELARS for
a large number of users.

Horizontal scaling, or scaling out, implies adding more nodes to a distributed
system, in this case adding more servers to a cluster running the application [17].
Vertical scaling, or scaling up, means adding resources to a single node in the
system, in this case adding additional central processing units (CPUs), graphics
processing units (GPUs), memory etc. When required to scale, one can opt for
horizontal or vertical scaling, or combine both. There are advantages to each of
two approaches. From the programming standpoint, vertical scaling is simpler,
but tends to be limited by hardware specifications (i. e. one can only fit a lim-
ited number of CPUs and GPUs or limited amount of memory in a single node).
Horizontal scaling enables addition of more resources. However, it requires a
more complex programming model that may or may not fit a particular appli-
cation. Also, larger numbers of nodes in a distributed system implies increased
management complexity.

This paper presents our approach to performance optimization of ELARS
algorithms using NVIDIA CUDA heterogeneous parallel programming platform
enabling code to run on both GPU(s) and CPU(s). We found the preference
prediction to be particularly demanding in terms of computation time. Suitable
parts of preference prediction algorithms are moved to GPU for execution to
improve overall performance. Meanwhile, CPU executes the parts not suitable
for the GPU. Our approach utilizes a single node and allows vertical scaling
with introduction of faster CPUs and GPUs. Future server systems running web
application will be increasingly heterogeneous, with its computation power di-
vided over a number of different processors [12]. Our approach contributes to
promotion of heterogeneous parallel programming usage in web application de-
velopment. To the best of our knowledge, this is also first application of NVIDIA
CUDA in domain of e-learning.

The paper is organized as follows: first we present ELARS, then we introduce
heterogeneous parallel programming approach with focus on NVIDA CUDA,
then we describe our approach to algorithm parallelization. We do performance
benchmarks, and conclude along with possible directions for future work.

2 E-Learning Activities Recommender System

E-learning Activities Recommender System – ELARS [10] supports collaborative
e-learning activities in an online learning environment that consists of a learning
management system (LMS) and 10 different Web 2.0 tools [3]. In such environ-



ment, students use LMS to study the learning content, read the instructions,
solve online tests, communicate with others and similar. They use Web 2.0 tools
for realization of e-learning activities like seminar writing, mind-mapping or We-
bQuests. Students use recommender system in parallel with other components
of the learning environment to choose between recommended items.

2.1 Recommendation Algorithms in ELARS

The system provides personalization by recommending optional Web 2.0 tools,
collaborators, optional e-learning activities (e-tivities), and offering advice to
students and groups. Recommendations are based on several students character-
istics [11]: preferences of Web 2.0 tools, preferences of learning styles, knowledge
level and activity level. Preferences of Web 2.0 tools and learning styles are col-
lected via questionnaires at the beginning of the course. Knowledge level is de-
termined based on student’s results on online tests and activity level, which rep-
resents quantity and continuity of student’s (group’s) contributions in e-tivities,
is calculated based on activity traces collected from Web 2.0 tools.

From the scalability point of view, the most challenging task of the recom-
mendation process is to predict not known Web 2.0 tools preferences that are
used for calculating utility of potential collaborators, offered Web 2.0 tools or op-
tional e-tivities. Web 2.0 tools preferences are predicted using hybrid approach
[16]. Recommender switches between collaborative filtering and content-based
recommendations based on the number of known preferences in the system’s
database. Using collaborative filtering technique preference of the target stu-
dent for target tool is predicted based on preferences of similar students (near-
est neighbours) for target tool [1]. n case nearest neighbours cannot be found,
content-based recommendations technique [16] is used and preference is pre-
dicted according to target student’s preferences for other tools.

2.2 System Performance Bottlenecks

Since the number of system’s users is much bigger than the number of tools
included in the learning environment, performance bottleneck was found in case
of collaborative filtering. This technique is performed in two phases which can
both be addressed using GPU: neighbourhood selection and target tool predicted
preference computation.

Neighbourhood Selection. When performing collaborative filtering the rec-
ommender system uses knowledge about similar users’ preferences regarding tar-
get tool [1]. Therefore, similarity of the target student with students for which
target tool preference exists in the system database is calculated. Similarity
between students is determined based on known preferences or learning styles
preferences according to VARK model [6]. In that process we calculate cosine
similarity [15] which is commonly used metric for collaborative filtering. To form
the neighbourhood, 𝑘 students who are the most similar to the target student
are selected. The configuration parameter 𝑘 is set to 20 using cross-validation.



Predicted Preference Computation. Preference value 𝑝𝑝 is predicted based
on normalized preference values for nearest neighbours 𝑡𝑝′

𝑖 [1] using formula 1.
Normalization of neighbours’ preferences using mean-centering method is per-
formed to unify the criteria on the basis of which neighbours expressed their pref-
erence. Besides normalization, to increase the accuracy of prediction algorithm
weighting factors 𝑤𝑖 are used. Values 𝑤𝑖 represent the similarity of neighbour
𝑖 with target student. By using such weights the influence of preference from
certain neighbour to the result value is bigger if he/she is more similar to the
target student. This effect is further improved by introducing amplification fac-
tor 𝛼 = 2. The resulting value is normalized using expression in the denominator
and added to the target student’s mean preference 𝑡𝑝.

𝑝𝑝 = 𝑡𝑝 +
∑︀𝑘

𝑖=1 𝑤𝛼
𝑖 𝑡𝑝′

𝑖∑︀𝑘
𝑖=1 𝑤𝛼

𝑖

(1)

3 Heterogeneous Parallel Programming

Usage of graphics processors for general-purpose computing started with pro-
grammable shaders on the NVIDIA GeForce FX and AMD Radeon series of
graphics cards in early 2000s [20]. Shaders were programmed using either High-
level shading language (HLSL) from Microsoft DirectX, OpenGL Shading Lan-
guage (GLSL), or NVIDA Cg. Despite the requirement to significantly change
the algorithms to adapt them for graphics processing unit (GPU), programming
non-graphics problems using shaders became popular soon afterwards.

NVIDIA recognized the potential for the utilization of the GPU for general
purpose calculations, and with GeForce 8 series opened up the GPU using a cus-
tom application programming interface (API) named Compute Unified Device
Architecture, or CUDA for short [13]. CUDA has been made available to the
public in February 2007, and is supported by all NVIDIA graphics processors
released since.

Despite the appearance of the open standard named OpenCL which has the
same purpose as (proprietary) CUDA, CUDA and therefore NVIDIA continues
to dominate the market. Beside being first to appear, it is also due to greater
amount of literature available and better programming tools. While both stan-
dards are very similar, they are not compatible [5].

3.1 Related Research Efforts

GPUs have so far been used to solve problems in bioinformatics, chemistry,
physics, mathematics, medicine, mechanical engineering, electrical engineering,
computer science, and other science and engineering disciplines. Garland et. al.
survey applications of CUDA to a diverse set of data parallel problems, finding
varying speedups of GPU-enabled algorithms vs CPU-only versions depending
on the algorithm properties [8]. Gregg and Hazelwood, as well stress that any
benchmarks that lead to conclusions on speedup should provide information on



where the data is assumed to be, because copying data from CPU memory to
GPU memory and back can take a significant amount of time [9]. It also is worth
noting applications of CUDA that could be used in recommender systems; Gar-
cia, Debreuve, and Barlaud implement brute force 𝑘 nearest neighbours selection
using CUDA C and conclude that GPU speedup can be up to 120 times com-
pared to equivalent CPU code implemented in C [7], including data copies from
CPU to GPU and back in computation time.

3.2 GPU Architecture and CUDA Programming Model
Single instruction, multiple data (SIMD) is a class of parallel processors that
have a larger number of processing elements that can do the same operation on
multiple data simultaneously. This feature exploits data-level parallelism. GPUs,
unlike most central processing units (CPUs), are SIMD processors, which allows
acceleration of suitable algorithms. Performance gains vary greatly, and can be
anything from a couple of percent to one or even two orders of magnitude.

From now on, we focus solely on programming NVIDIA GPUs using CUDA
programming language. CUDA began as an extension of programming languages
C/C++ and Fortran. Special directives were added to both languages that al-
lowed to offload parts of computation to GPU.

CUDA API exposes threads, which are grouped in blocks of threads, which
are again grouped in grid of blocks. Each block allows indexing in three di-
mensions, while the number of dimensions for grid is limited to two. This pro-
gramming model is intended to fit multidimensional arrays. Functions written in
CUDA intended to run on the GPU are named kernels. On each kernel call, the
number of blocks and threads on which the kernel will be executed is specified.
Therefore each kernel can be written for data of varying shape and size.

3.3 CUDA Libraries
CUDA ecosystem offers a number of libraries that simplify programming and
even provide highly optimized versions of frequently used algorithms, for example
reductions and sorting. In this work we use Thrust [2] and PyCUDA [14] which
we describe below.

Thrust. Thrust is a C++ template library for CUDA based on C++ Standard
Template Library. Thrust offers a number of data parallel primitives such as
scan, sort, and reduce. These primitives can be used along with existing C++
code to ease offloading parts of code onto the GPU and enable rapid prototyping
of CUDA applications.

PyCUDA. PyCUDA is a Python module that enables programmers to access
CUDA API. Due to Python’s clean syntax, it is very suitable for prototyping
software. With PyCUDA, it becomes possible to also for prototype software that
uses CUDA. In addition, PyCUDA enables access to existing CUDA C/C++
libraries such as Thrust.



4 Algorithm Parallelization Approach
We found Python and PyCUDA to be very suitable for rapid prototyping and
comparison of different approaches to parallelization. We ported preference pre-
diction code from existing C# implementation to Python, utilizing NumPy [19].
NumPy is a Python module providing high-level interface to C-like arrays for
efficient numerical computation. Large parts of NumPy are implemented in C
and Fortran; this in and of itself resulted in significant performance improvement
in implementation of our algorithms done in Python and NumPy compared to
implementation done in C#. During prototyping stage we also simplified the
resulting program by caching data which is normally retrieved from database.

4.1 Neighbourhood Selection Parallelization
Since number of potential neighbours grows with increase in number of students
– system’s users, neighbourhood selection is a performance bottleneck. For ex-
ample, if the ELARS was deployed at University of Rijeka which has nearly
20000 students, a popular Web 2.0 tool could easily have 10000 or even 15000
entered preferences.

Brute force search is used to select nearest neighbours. Thrust function
thrust::sort_by_key(), which sorts key-value pairs, was a good fit for GPU
version of the algorithm. Somewhat counter-intuitively, key set is similarity ex-
pressed as floating-point number, while the value set consists of student IDs.
Since neither hashing nor numerical operations are done using these floating-
point numbers, usage of floats here does not lead to problems. In each iteration
key and value arrays are copied to the GPU, and after sorting both arrays are
retrieved from the GPU.

4.2 Predicted Preference Computation Parallelization
To optimize predicted preference computation, we opted to compute all the pre-
dictions in a single kernel execution. To achieve it, learning similarities matrix is
copied to the GPU on program initialization. After that, pairs of target students
and tools are collected and stored in a 2D array, as well as normalized target
tool preferences for all pairs. Normalized target tool preferences are computed
on the CPU. Since it is required to select only non-null values from the array, we
expect such selection done on GPU would slow down computation significantly
and compensate for potential benefits of parallelization.

Both arrays are copied to the GPU, and computation of sum elements for
nominator and denominator of formula 1 is done. Sum reduction can then be
done on either CPU or GPU. If reduction is done on the CPU, whole array is
copied back; if it is done on GPU, only a single resulting value is copied back.

5 Performance Measurements
A system with AMD FX-8150 8-core CPU and NVIDIA GeForce GTX 660 GPU
was used for testing and benchmarking. We should emphasize that neither 64-bit



floating point precision nor large amounts of GPU memory are required in this
domain, so commodity GeForce GPUs can be used as well as more expensive
ones from Tesla and Quadro series.

We measure the computation time required to get student’s tool preference
for all students for all tools, that is, to predict all unknown preference values.
In dataset, loaded from flat text files, we used for testing 57,5% of preferences
are unknown. We measure computation time for 10 tools for 640, 1280, 2560,
5120, 10240, 20480 students. Computation time for each number of students for
CPU-only and CUDA-enabled GPU and CPU code is shown in Figure 1. CPU
code in both cases uses no parallelization and runs on a single CPU core.

On the GPU side, we should note that both PyCUDA GPU Array module
and Thrust library dynamically determine number of blocks and threads to be
used for computation depending on data and GPU used, without needing to be
manually specified by user.
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Fig. 1. Performance measurements for entire algorithm.

We can observe that for smaller number of students (640, 1280, and 2560)
CPU-only and CUDA-enabled code are very close in terms of computation time.
At 5120 students they start to visibly diverge, and difference becomes even
greater in cases of 10240 and 20480 students. We can see that the gap widens
with increasing number of students, arriving at nearly 3 times the speedup in
favor of GPU at 20480 students.

Total execution time of sorting in 𝑘 nearest neighbours selection, including
copying of data from CPU to GPU memory and back, is shown in Figure 2. We
can observe the exponential increase in computation time for the CPU, while the



for the GPU the increase remains linear for the number of students we measured.
Difference in computation time starts to be apparent with 3 times GPU speedup
over CPU at 5120 students, increase to nearly 7 times at 10240, and finally ends
up being over 14 times at 20480 students. It is also apparent that 𝑘 nearest
neighbours dominates the computation time of the entire preference prediction
algorithm in larger cases, taking nearly over half of computation time.
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Fig. 2. Performance measurements for sorting in 𝑘 nearest neighbours selection.

Total execution time of target tool predicted preference computation, again
including copying of data from CPU to GPU memory and back, is shown in
Figure 3. We can see how both CPU and GPU computation time increases
linearly with the number of students, but GPU computation time consistently
remains around two orders of magnitude smaller. In other words, we get GPU
speedup over CPU between 75 and 100 times.

6 Conclusions, Discussion and Future Work

We presented an approach to optimization of recommender system performance
by offloading parts of algorithms to GPUs. We find this approach to be reason-
able considering the expectation that future machines will be increasingly het-
erogeneous, and their computing power will be divided across a range of chips
with different characteristics targeting certain kinds of problems. We found the
optimizations we used to improve performance significantly, and allow scaling
for a larger number of users.
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Fig. 3. Performance measurements for target tool predicted preference computation.

While CUDA dominates the market at present, it is realistic to expect that
in the future OpenCL play a significant role. Intel and AMD, both supporting
OpenCL, already ship most of their CPUs with integrated GPU, and recently
with AMD Berlin APU making into the Opteron line of processors this trend
moved this in the server domain as well. Both performance and power consump-
tion of GPUs and APUs has the potential to make them an attractive choice in
the server environment, even outside the usual scientific computing applications.

With these technology developments in mind, our other future plans include
offloading even larger amounts of computation on the GPU, porting of CUDA-
enabled code from Python to C# to ease integration within ELARS, and finally
deployment in production at University of Rijeka.
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